Western States Rural Transportation Consortium Meeting

June 14, 2011

1

ENGINEERING

Overview/Agenda

- Welcome / Introductions / Recent ITS Activities
- General Status of the WSRTC
- Clarus One Stop Shop Update
- Year 1 Incubator Project Update/Overview
- COATS Phase 4 Project Follow-up
- Other discussions (as needed)

College of

ENGINEERING

Roundtable of Recent ITS Activities

College of ENGINEERING

3

General Status of the Western States Rural Transportation Consortium

College of ENGINEERING

4

Clarus One Stop Shop

5

College of

ENGINEERING

Broad Agency Announcement No. DTFH61-10-R-00015

- Posted by FHWA on March 15, 2010
- Proposals Due April 14, 2010

College of

ENGINEER

• The goal of this Broad Agency Announcement (BAA) is to support research and scientific study on the use of Clarus System data to improve surface transportation weather management/operations, create innovative interfaces, and/or develop new applications including weather-responsive traffic management tools. The FHWA anticipates making up to seven (7) awards, but reserves the right to make more or fewer than seven (7) awards.

6

WTI Proposal

- Proposal Submitted on Time
- Included signed letters of support from WSRTC member states: California, Oregon, Washington and Nevada
- GOAL: Expand the One-Stop-Shop Prototype to Cover all of California, Oregon, Washington and Nevada
 - ... to address the shortcomings of current (multi-state) webbased weather information sources for travelers (and DOT personnel) ...

7

Western Transportation Institute

Project awarded on 9/24/2010

ENGINEERING

Progress

- We're close to having the site ready for review by FHWA and Consortium members.
- We need to check functionality and address what is missing.
- In general, we have included all of the anticipated data sets, including coverage of Washington with nearly all layers.

8

Western Transportation Institute

College of

ENGINEERI

A Preview ...

ENGINEERING

9

ENGINEERING

11

College of

Station ID: 3048		.08
Elevation: 1611 m		
Source: CA State DOT		
essRelativeHumidity	45.000 %	8:26 AM MDT - Thu, Jun 9 2011
essDewpointTemp	26.600 F	8:26 AM MDT - Thu, Jun 9 2011
precipType	1.000	8:26 AM MDT - Thu, Jun 9 2011
windSensorAvgSpeed	1.243 mph	8:26 AM MDT - Thu, Jun 9:2011
essSubSurfaceTemperature	61.160 F	8 26 AM MDT - Thu, Jun 9 2011
windSensorAvgDirection	75.000 deg	8:26 AM MDT - Thu, Jun 9 2011
windSensorGustDirection	68.000 deg	8:26 AM MDT - Thu, Jun 9 2011
essAirTemperature	46.400 F	8:26 AM MDT - Thu, Jun 9 2011
essSurfaceStatus	3.000	8:26 AM MDT - Thu, Jun 9 2011
essSurfaceTemperature	56.300 F	8:26 AM MDT - Thu, Jun 9:2011
precipIntensity	1.000	8:26 AM MDT - Thu, Jun 9 2011
windSensorCiustSpeed	1 243 mph	8-26 AM MDT - Thu Jun 9-2011

Clarus Data

Station ID: 5762 Elevation: 1624 m Source: NV State DOT						8
windSensorAvgSpeed	12.096 mph	17:32	MDT	- Fri, Ju	m 3 20	11
essDewpointTemp	31.800 F	17:32	MDT	- Fri, Ju	m 3 20	11
windSensorAvgDirection	28.000 deg	17:32	MDT	- Fri, Ja	m 3 20	11
windSensorGustDirection	66.000 deg	17:32	MDT	- Fri, Ju	m 3 20	11
essAirTemperature	46.400 F	17:32	MDT	- Fri, Ja	m 3 20	11
essPrecipRate	0.000 in h	17:32	MDT	- Fri, Ju	m 3 20	11
essRelativeHumidity	57.000 %	17:32	MDT	- Fri, Ja	m 3 20	11
windSensorGustSpeed	19.712 mph	17:32	MDT	- Fri, Ju	n 3 20	11

MONTANA STATE UNIVERSITY

College of ENGINEERING

12

College of ENGINEERING

14

Route Coverage: Los Angeles to **Seattle**

Mon Jun 6, 2011 7:50 AM PDT

CCTV Images convey a lot of information ...

17

ENGINEERING

Price Creek on I-90 @ MP61 Price Creek on I-90 @ MP61 WSDOT X

STATE UNIVERSITY College of ENGINEERING

19

Western Transportation Institute

ENGINEERING

ENGINEERING 22

College of

Information at a Glance

ENGINEERING 27

College of

Further Detail Upon Zoom

Brief Live Demonstration

• If time, network, etc. allow ...

ENGINEERING

29

Tasks and Deliverables

Contract Start = 9/24/2010	Actual Start = 11/1/2010			010	End=9/23/2011								
	project month	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2
System Concept													
Concept Report		D√											
Requirements													
Technical Memorandum – Requirements			D√										
Design and Development													
Technical Memorandum – System Design					D√								
Technical Memorandum – System Docume	ntation								D				
Completed System									D				
User Guide									D				
Evaluation/User Survey													
Survey Instrument										D			
Final Report											D	\Diamond	D

Duration = 12 months Amount of Award = \$79,995

30

Year 1 Incubators

ENGINEERING

College of

31

Year One Projects

- Survey of Western State Safety Warning Devices
- Regional Integrated Corridor Management Planning
- Status Startup pending contract execution, anticipated June/July

32

Western Transportation Institute

Workplans finalized

College of

ENGINEERING

Survey of Safety Warning Devices

- Synthesis of existing safety warning devices in the western U.S.
- Contact entities to obtain specific information of interest

College of

ENGINEERI

Identify location of existing deployments, their function/purpose, and other info

33

Survey of Safety Warning Devices

Approach

- Identify devices of interest and develop questionnaire
 - Work in conjunction with WSRTC members
- Identify and contact agencies/staff
 - Personal contact via telephone calls
- Summarize data and produce report
- 12 month timeline

College of

Regional ICM Planning

- Revised based on steering comm.
 Feedback at November meeting
- Establish guidance and criteria to initiate, plan and develop rural ICM plans
 - Define what rural ICM is and establish factors to consider
- Apply results of USDOT Integrated Corridor Management initiative to the rural environment

35

College of

Regional ICM Planning

- Approach
 - Literature review
 - Document current ICM planning protocols
 - i.e. USDOT ICM initiative
 - Document current emergency operations center protocols
 - i.e. what are WSRTC agencies doing
 - Develop rural ICM planning protocols/ process
 - Solicit Steering Comm. feedback on candidate test route(s)

36

Regional ICM Planning

- Approach cont'd
 - Route inventory for selected route(s)
 - Apply developed criteria to study route(s)

37

Western Transportation Institute

- Final report
- Timeline 12 months

College of

ENGINEERING

COATS Phase 4 Project Updates

38

- Rural Deployment Assistance
- Fredonyer Pass Icy Curve Warning System (ICWS)

Rural Deployment Assistance:

Analysis and Recommendations for Optimization and Deployment of WeatherShare and Related Web-Based Projects

3

College of

ENGINEERING

39

Multiple Projects on a Similar Platform

- WeatherShare
- Integrated Corridor Management Clearinghouse (ICM)
- Caltrans One Stop Shop for Traveler Information
- Integration of Aviation Automated Weather Observation Systems (AWOS) with Roadside Weather Information Systems (RWIS)

40

- Clarus One Stop Shop
- WSRTC One Stop Shop (Phase 2)

College of

ENGINEERI

Challenges

- Still in research and development mode need to move to production
- Fragmented code-base with a lot of redundant code, data, etc.
- Non-optimal code
- Lack of scalability
- Poor logging/tracking made analysis difficult.
- Hard to characterize use seasonal components, mixed user types, etc.

41

- Use has been relatively limited
- Need to plan for expanded coverage area
- Hosted at Montana State University

ENGINEERI

College of

Analysis

- System Performance
 - Networking (incoming and outgoing)
 - Storage
 - CPU
 - Memory
- Implementation
 - Software
 - Database
 - Documentation

42

Hosting Alternatives

43

- Dedicated Server
- Dynamic Cloud Server
- Elastic Cloud Server

Recommendations

- Implement optimizations such as server-side compression of text files
- Determine whether or not archiving is necessary
- Re-factor code

College of

- Put greater emphasis on system documentation, on-going support, maintenance, re-use and scalability
- Investigate hosting options further, particularly "elastic" options – dynamic expansion

44

Fredonyer Pass Icy Curve Warning System

College of ENGINEERING

45

Fredonyer ICWS

- Project objective: evaluate the operational, safety and maintenance aspects of the ICWS
- Status: Revising analysis to incorporate chain control data and finishing report
- Preliminary results: indicate system appears to have reduced crashes and lowered speeds

46

Western Transportation Institute

College of

Fredonyer ICWS

Tasks:

Literature review update
Analysis of radar speed data
Analysis of crash data
Document maintenance aspects

College of

ENGINEERING

47

Fredonyer ICWS Crash Analysis

- Examine crash data and trends before and after the deployment of ICWS
- Used observational before-after study method employing the Empirical Bayes technique
 - Addresses concerns such as regression to the mean, changes in traffic flow, and other factors
 - Used 4.5 years of before data (January 1, 1998 June 30, 2002) and 1.5 years of after data (July 1, 2008 – December 31, 2009)

College of

ENGINEER

Fredonyer ICWS Crash Analysis

Results

- Calculating the index of effectiveness (θ), ICWS reduced crashes by 18% during after period (annual)
 - Assumption that changes in crashes attributed to presence of the ICWS, as no other geometric or safety improvements were made during the study period
 - Ongoing work examining chain control status and crashes has indicated that only two crashes occurred shortly before R-1 chain control implemented (data available from 2008-2009)

RING 4

College of

49

Fredonyer ICWS Crash Analysis

Observed crash rates by severity also improved

	Crash Rate (ice-related crashes per winter season)				
Study Period	Total	PDO	Injury	Fatality	Fatality + Injury (F+I)
Before	8.38	5.51	2.42	0.44	2.86
After	6.67	4.00	2.67	0	2.67

- Indicates that vehicles may be traveling slower = lower severity
- Based on these improvements, estimated safety benefit of \$1.7 million

50

College of

ENGINEERING

- T-tests employed to determine statistical significance between speeds
- Speeds differences of 0 mph, 3 mph and 5 mph examined

51

Western Transportation Institute

 Speeds evaluated for system state (on/off), day/night and weather

College of

- System state
 - Speeds were significantly lower at 0 mph, 3 mph and 5 mph when system was on
- Day/Night
 - Speeds were significantly lower at 0 mph, 3 mph and 5 mph when system was on during both day and night

52

Western Transportation Institute

College of

ENGINEERI

- Weather
 - Speeds were significantly lower at 0 mph, 3 mph and 5 mph when system was on during both day and night
 - Day mean speeds fell between 6.20 mph and 10.73
 - Night mean speeds fell between 10.34 mph and 16.14 mph

53

Western Transportation Institute

College of

Clear Cold Dry/Not Dry

College of

- Mean speeds different at 0 mph during day and night when signs on
- Mean speeds different at 3 mph during day and night when signs on
- Only limited number of mean speed differences greater than 5 mph
- Appears ICWS prompts approximately 3 mph speed reductions when icy roads are not necessarily expected

54

Fredonyer ICWS Conclusions

- Crashes initial results indicate that crashes have been reduced by approximately 18%
 – Only evaluated 1 ½ years of "after" data
- Speeds system appears to reduce speeds by approximately 3 mph during clear, cold and not dry conditions
 - Results pertain to sites prior to curves; greater reductions are possible/hypothesized as vehicles traverse curves

55

College of

ENGINEERI

Discussion

56

Items

Upcoming meetings

College of

ENGINEERING

- Next Consortium meeting August at NRITS in Coeur d'Alene, Idaho
 - Scheduled for Wednesday, August 31st from 1:00 – 4:00 PDT
- November Steering Committee Meeting tentatively scheduled for November 8, 2011 in Yreka

57

Wrap-up

58

