Abstract

The California Department of Transportation (Caltrans) deployed an Icy Curve Warning System (ICWS) on a four-mile section of State Route (SR) 36 in Lassen County over Fredonyer Pass. This section of roadway had a history as a high-crash location, with multiple fatal crashes. The vast majority of these accidents occurred when the pavement was icy, despite static signage that Caltrans had installed to increase motorist awareness. This study presents the results of research that investigated safety effects of the ICWS. An observational before-after study method with Empirical Bayes (EB) technique was used to determine the effect the ICWS on crash frequencies.

Background

The Fredonyer Pass ICWS consists of ten identical but separate warning systems: Fredonyer Summit ICWS and Fredonyer East ICWS. The location of the Fredonyer Pass ICWS is shown in the figure. The technology consists of using pavement sensors to detect icy conditions, in combination with dynamically activated signage. The motivation for real-time warning when icy conditions are present.

Results

The predicted number of crashes in the after period without the ICWS: $N_{expected} = 14.08$ (crashes)

The number of reported crashes in the after period with the ICWS present: $N_{actual} = 12$ (crashes)

The results revealed that the deployment of the ICWS reduced the number of annual crashes by 18%. The use of ICWS has been beneficial.

Conclusions

The system has potentially provided safety benefits of 1.17 million dollars per winter season during the “after deployment” study period.

Limited after deployment data collected to make any results definitive.

Data will continue to be collected to update the analysis over the next several years.

Acknowledgement

The authors wish to thank the California Department of Transportation (Caltrans) and the University Transportation Centers Program of the Office of Research, Development and Technology, Research & Innovative Technology Administration at the U.S. Department of Transportation for funding this research. They also thank Gerry Reyes of Caltrans for his assistance in obtaining the various data used in support of this work. They also thank Kerri Beals and Gary Meurer, Caltrans District 2, for their support of the system optimization work. The authors thank the Highway Safety Information System (HSIS) for providing part of crash data employed here. Finally, they thank Scott Bennett, David Venezia, and Clint Burkenpas of Caltrans and Shyam Sharma of the Western Transportation Institute for their input to this work.

The contents of this poster reflect the views of the authors, who are responsible for the facts and the accuracy of the data herein. This content is not necessarily reflective of the official views or policies of the State of California, California Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. This report is not intended to replace existing Caltrans mandatory or advisory standards, nor the exercise of engineering judgment by licensed professionals.

Methodology

This study used observational before-after with empirical Bayes (EB) to evaluate the safety effects of ICWS. The following Safety Performance Function (SPF) for rural two-lane, two-way roadway segments provided in the Highway Safety Information System (HSIS) for the study period. Crash information included date and time, post-mile, road surface condition, type of accident, etc., as summarized in the following table.

<table>
<thead>
<tr>
<th>Period</th>
<th>No of Months</th>
<th>Crashes</th>
<th>PDO (in-vehicle)</th>
<th>Injury (in-vehicle)</th>
<th>Fatality (in-vehicle)</th>
<th>Fatality (PDO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>12</td>
<td>17</td>
<td>8 (5)</td>
<td>8 (5)</td>
<td>1 (1)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>After</td>
<td>12</td>
<td>9</td>
<td>7 (5)</td>
<td>7 (5)</td>
<td>2 (2)</td>
<td>0</td>
</tr>
</tbody>
</table>

The authors thank Ken Beals and Gary Meurer, Caltrans District 2, for their support of the system optimization work. The authors thank the Highway Safety Information System (HSIS) for providing part of crash data employed here. Finally, they thank Scott Bennett, David Venezia, and Clint Burkenpas of Caltrans and Shyam Sharma of the Western Transportation Institute for their input to this work.

Contact Information

Western Transportation Institute
Montana State University
P.O. Box 174290, Bozeman, MT 59717
Phone: 406 994 6320; Fax: 406 994 1697
david.veneziano@coe.montana.edu