
  

 
 

Automated Safety Warning Controller  
Management and Maintenance Guide  

 

By 

 

Daniel Richter, Research Associate 
Kelvin Bateman, Research Associate  

Douglas E. Galarus, Program Manager, Senior Research Associate 

 

Western Transportation Institute 

College of Engineering 

Montana State University 

 

Prepared for  

 

Caltrans 

State of California Department of Transportation 

Division of Research and Innovation 

 

Attention: Sean Campbell 
Attention: Ian Turnbull 

 

 

March 22nd, 2013 



Controller Installation Guide  Revision History 
 

Western Transportation Institute  Page i 
 

 

REVISION HISTORY 

Version Date Description Description of Changes 

1.0 09/21/2009 Phase 1 Installation guide Preliminary Summary and 
Recommendations for Submission 
to Caltrans 

2.0  Phase 2  Added changes to for the Phase 2 
ASWC 

 



Controller Installation Guide  Table of Contents 
 

Western Transportation Institute  Page ii 
 

Table of Contents 
 
Revision History .............................................................................................................................. i 

Introduction ................................................................................................................................. 1 

Security and Logins .................................................................................................................... 2 

Directory Structure...................................................................................................................... 3 

Controller Software Installation .................................................................................................. 5 

Controller Passwords .............................................................................................................. 5 

Editing Configuration Files ..................................................................................................... 5 

Install Script Information .......................................................................................................... 12 

SOCCS Client Installation ........................................................................................................ 13 

Writing Alert Scripts ................................................................................................................. 15 

Python Syntax ........................................................................................................................... 17 

Regular Maintenance ................................................................................................................ 18 

Weekly .................................................................................................................................. 18 

Monthly ................................................................................................................................. 18 

Reference ...................................................................................................................................... 19 

ConversionDict.py .................................................................................................................... 20 

OIDDict.py................................................................................................................................ 21 

Loop Module Sensors ............................................................................................................... 23 

  



Controller Installation Guide  Introduction 
 

Western Transportation Institute  Page 1 
 

Introduction 
 
This document describes the basic structure and setup of the Automated Safety Warning 
Controller (ASWC) developed by Western Transportation Institute under contract with the 
California Department of Transportation’s Division of Research and Innovation.  The controller 
interfaces with roadside sensors and signs.  This allows for automated data collection and 
application of user defined scripts for placing alert messages on changeable message signs. 
 
The controller system for Phase 1 ran on a Moxa UC-7420 RISC based embedded computer 
running Linux kernel version 2.4.18. The controller system for Phase 2 added the ability to run 
on a Moxa DA-661 rack mount RISC based embedded computer running Linux kernel version 
2.6.10.  All controller modules were written using the Python scripting language. 
 
This document contains information about the security and logins used by the controller 
application; the directory structure of controller; information about the key files that control the 
behavior of controller; and step by step instructions for setting up a controller unit. 

 

 



Controller Installation Guide  Security and Logins 
 

Western Transportation Institute  Page 2 
 

Security and Logins 
 
There are four levels of permissions associated with the Controller device: An operator level 
which allows the user to view logs and status information, but not change anything; a slightly 
elevated supervisor level that permits impermanent changes to be made to a running Controller, a 
technician level that allows changes to be made to the Controller software installation, and an 
administrator level that allows full control over the device.  
 
An operator accesses the device either through the TMC login over SSH, or through the Satellite 
Operations Center Command System (SOCCS) ASWC web interface. The SSH TMC login goes 
directly to the Controller command line interface. The operator can execute any commands that 
do not require the user to have first executed the enable command (see the command line 
interface documentation).   The preferred method for operator access is through the SOCCS 
ASWC interface. 
 
A supervisor accesses the system in the same way as an operator either through the TMC login 
over SSH, or through the SOCCS ASWC web interface, and all the same commands are 
available to a supervisor. The supervisor, however, if using the SSH command line interface can 
issue the enable command and be able to execute commands that change the state of a running 
Controller. The commands that can be executed after the enable command are documented in the 
command line interface documentation.  The preferred method for supervisor access is through 
the SOCCS ASWC interface. 
 
The SOCCS ASWC system allows logins to be setup for users with either operator or supervisor 
access levels. 
 
Technicians access the device through the controller login over SSH or SFTP. They have full 
access to the Controller software installation (usually at directory:  “/Controller”), but may not 
make operating system changes and do not have access to the “ /etc” directory. Technicians may 
set the password for the controller login and the enable password for supervisor access. 
 
System administrators have full control over the device. They have read and write permissions 
on the whole file system and may make changes to the operating system, Controller, or any of 
the logins. The system administrator does initial device setup, and any device level maintenance 
including setting passwords for any of the other permissions levels. 
 
The passwords for the command line and SOCCS ASWC interface are stored in a file called 
passwd in the manager directory of Controller and can be set up using a simple script as 
described below under Controller Software Installation.   All other permissions levels are 
handled as Linux users and their passwords may be set with the Linux passwd utility. 



Controller Installation Guide  Directory Structure 
 

Western Transportation Institute  Page 3 
 

Directory Structure 
 
The Moxa device stores the operating system, related binaries, configuration files, and the rest of 
the root file system on a flash ROM in the enclosure. The Controller file system is stored on a 
CompactFlash card that is inserted in device, which the Moxa software automatically mounts at 
/var/hda. The base path of the Controller application is configurable, but this document 
assumes paths starting at /Controller/.  DO NOT copy the Controller directories to the Moxa’s 
flash ROM, the flash ROM is not large enough for Controller to operate correctly. 
 
/Controller/alert_logic 
This directory contains the alert logic scripts. After a script is developed and tested the script file 
is placed in this directory. The script names must end in .py and otherwise be consistent with the 
name of the alert logic script in the configuration file. 
 
/Controller/data 
This directory stores all the data files used by field elements. The files store current and past 
data, for persistence if the Controller application is restarted, and for history.  Data is currently 
stored in csv format.  There will be a data file for each field element configured in the system 
including CMS signs, RWIS, MVDS, and Loop sensors.  Note that the Controller system 
archives data files by appending a date to the end of the filename. 
 
/Controller/field_elements 
This directory contains the modules needed to communicate with different field elements. The 
files in this directory should only be changed when updating software or adding the capability to 
communicate with a new type of field element.  Two files that may need to be viewed/modified 
are: ConversionDict.py and OIDDict.py.  ConversionDict.py contains a dictionary of 
conversions to be applied to rwis sensor values, for instance to convert from degrees Fahrenheit 
to Celsius. OIDDict.py contains a dictionary of OID values for NTCIP sensor names, this can be 
referenced to get valid sensor names but shouldn’t have to be changed.  Examples of both of 
these files are listed at the end of this document. 
 
/Controller/log 
This directory stores the log files generated by Controller. CMS.log contains errors and 
informational messages produced by the CMS field elements, such as when a message was 
placed on the sign, or why one wasn’t. It is also where CMS messages generated by alert scripts 
are written.  
QC.log contains all the sensor readings that fail quality control checks, as well as the value that 
failed the check.  
system.log stores all other messages generated by the Controller application: program errors, 
failures in communication with field elements, errors or bugs in alert logic scripts, etc. 
 
/Controller/manager 
This directory contains the heart of the application code, as well as the configuration files. 
Generally the only files in this directory that need to be changed are AlertLogic.ini, 
FieldElement.ini, Messages.ini and QualityControl.ini.  
AlertLogic.ini contains configuration variables for alert logic scripts.   



Controller Installation Guide  Directory Structure 
 

Western Transportation Institute  Page 4 
 

FieldElement.ini contains configuration variables for the field elements. 
QualityControl.ini contains minimum and maximum values for every unit that field element 
data is measured in.  Messages.ini contains a list of alert messages that can be used by the alert 
scripts. 
  



Controller Installation Guide  Controller Software Installation 
 

Western Transportation Institute  Page 5 
 

Controller Software Installation 
 
The Controller software can be placed on a CompactFlash card, and the card can simply be 
inserted into the Moxa enclosure. The Controller directories can be placed at the root level on the 
card, or any level of directories deep, as long as the controller.ini file (discussed later) has the 
absolute path of the Controller directories in it. Note that the CompactFlash card needs to be 
formatted with the ext2fs file system, so to install the Controller software on the card using a PC, 
the PC must support ext2fs. 
 
An automated script has been created for installing the Controller software on a Moxa device.  
Follow these installation instructions: 

1. Put the Controller directory and install_controller.sh script on the controller device 
(putting them on a usb key and plugging it in to the DA-661 works pretty well, 
alternatively you can type upramdisk on the device and ftp the files to /mnt/ramdisk) 

a. Note that the Controller directory and its sub-directories will be copied to the 
Moxa device as part of the install procedure.  You can create your own version of 
Controller to be installed on devices by adding your custom files to the 
appropriate location on the installation media.  For instance you may want to 
include the same alert scripts or the same Messages.ini files on all your 
installations. 

2. Run the install script 
a. The script will ask a series of questions and then setup the appropriate directories 

and system settings. 
3. Set up users for SOCCS: 

a. python /var/hda/Controller/manager/controllerpasswd.py adduser USERNAME 
PASSWORD OPERATOR|SUPERVISOR 

b. the last argument must be either OPERATOR or SUPERVISOR in all caps 
4. Set up user for enable password in command line interface: 

a. python /var/hda/Controller/manager/controllerpasswd.py adduser ThreadMonitor 
PASSWORD 

b. The username must be ThreadMonitor for it to be recognized as the enable 
password 

5. Start Controller: /etc/init.d/controller start 

Controller Passwords 
The SOCCS and enable passwords are kept in a file named passwd in the “Controller/manager 
directory”.  This file contains the username, hashed password, and OPERATOR or 
SUPERVISOR level of access.  The fields are separated with a 0xff character (value 255). 

Editing Configuration Files 
There are 6 configuration files that control the behavior of Controller and need to be edited for a 
new installation. Five of them are contained in the “/Controller/manager” directory, the fifth 
is in /etc/controller. 
 
AlertLogic.ini 



Controller Installation Guide  Controller Software Installation 
 

Western Transportation Institute  Page 6 
 

The AlertLogic.ini file contains a section for each alert logic script with values that control the 
behavior of the script.   A sample section would look like this: 
 

 
 
This example demonstrates the configuration for an alert script called windwarning. Note that 
there must be a corresponding script called windwarning.py in/controller/alert_logic/.   
 
The Status variable is used to turn scripts on and off for the duration of the running of the 
application. A value of 1 means this script will be started, a value of 0 means it will not be 
started.  For example, there may be a standard installation that is placed on all the Controller 
devices which includes a congestionwarning script that utilizes a loop detector. On installations 
that aren’t connected to a loop detector it would be pointless to run this script; on those 
installations the status could be set to 0, so the script never runs. 
 
The InitialDelay variable sets the amount of time the script waits before its first run after the 
application starts.    This allows the field element scripts to gather some data prior to the alert 
script running.  This value is in seconds. 
 
The Interval variable is the amount of time the script pauses between subsequent runs. This 
value is in seconds. 
 
The Threshold variable defines threshold values that are accessible by alert logic scripts. 
Defining a threshold in this configuration file, as opposed to hard coding them in a script, allows 
the variable to be viewed/changed from the command line interface.  Specified with each 
threshold value is its type and value.  Valid types are; “str” for strings, “int” for integers, “float” 
for floating point and “messagename” for messages configured in the Messages.ini file.  For 
example, the windwarning script configured by the preceding example may contain a condition 
like this: “if RWISStation.essAvgWindSpeed() > highwindwarning:”. The 

windwarning: 
{ 
    Status : 1 
    InitialDelay : 120 
    Interval : 60 
    Timeout : 2 
    Threshold: 
    { 
        highwindwarning : { type: "int", value: 56 } 
        windwarning : { type: "int", value: 41 } 
        windgustwarning : { type: "int", value: 46 } 
        windadvisory : { type: "int", value: 26 } 
        NextMilesMessage : { type: "str", value: "NEXT 5 MILES" } 
        highwindwarningmessage : { type: "messagename", value: 
"HighWindWarningMessage" } 
        windwarningmessage : { type: "messagename", value: 
"WindWarningMessage" } 
        windadvisorymessage: { type: "messagename", value: 
"WindAdvisoryMessage" } 
    } 
} 



Controller Installation Guide  Controller Software Installation 
 

Western Transportation Institute  Page 7 
 

highwindwarning variable is defined in the configuration file and could be changed from 
location to location by changing the value in the configuration file.  No modifications to the 
script would need to be made. The values of threshold variables can also be changed temporarily 
through the command line or web interface, although the change is lost if the device reboots or 
the application is restarted. 
 
FieldElement.ini 
This file contains a section for every field element, and they’re formatted similar to the sections 
in AlertLogic.ini. The name for each section can be arbitrary; it doesn’t need to correspond to 
anything else like the section names in AlertLogic.ini do. The FieldElement names are what are 
recorded in the logfile, used by alert logic scripts to access sensor data, and used for interaction 
in the command line and web interfaces, so they should be descriptive. This is an example of a 
typical section in FieldElement.ini: 
 
RWIS: 
{  
 Status : 1  
 Type : "rwis"  
 IPAddress : "10.10.31.20"  
      Port : 161  
 RetryNumber : 3 
 RetryInterval : 5  
 CommunicationTimeout : 30 
 SNMPCommunity : "private" 
 Interval : 60  
 MaxFileLength : 2000  
 SavePeriod : 30       
 DataValidTimeout : 340  
 Location : { 'Lat' : 40.0024, 'Long' : 0-120.9579}
  
 County : "Plumas"  
 Highway : "70"  
 PostMile : "50.86"  
 Sensors:  
 { 
  "essAirTemperature1"  : "degF" 
  "essRelativeHumidity" : "pct" 
  "essAvgWindDirection" : "degrees" 
  "essAvgWindSpeed"     : "mph" 
  "essMaxWindGustSpeed" : "mph"   
  "essDewpointTemp"     : "degF"  
  "essVisibility"       : "" 
  "essSubSurfaceTemperature" : "degF" 
  "essPrecipitationTwelveHours" : "" 
  "essPrecipitationSixHours" : "" 
  "essPrecipitation24Hours" : "" 
  "essPrecipitationThreeHours" : "" 
  "essPrecipitationOneHour" : "" 
  "essSurfaceStatus1" : "" 
  "essSurfaceStatus2" : "" 
  "essSurfaceStatus3" : "" 
  "essSurfaceStatus4" : "" 
  "essSurfaceTemperature1" : "" 
  "essSurfaceTemperature2" : "" 



Controller Installation Guide  Controller Software Installation 
 

Western Transportation Institute  Page 8 
 

  "essSurfaceTemperature3" : "" 
  "essSurfaceTemperature4" : "" 
 } 
 Fieldnames: 
 { 
   
  "essAirTemperature1" 
  "essRelativeHumidity" 
  "essAvgWindDirection" 
  "essAvgWindSpeed" 
  "essMaxWindGustSpeed" 
  "essDewpointTemp" 
  "essVisibility" 
  "essSubSurfaceTemperature" 
  "essPrecipitationTwelveHours" 
  "essPrecipitationSixHours" 
  "essPrecipitation24Hours" 
  "essPrecipitationThreeHours" 
  "essPrecipitationOneHour" 
  "essSurfaceStatus1" 
  "essSurfaceStatus2" 
  "essSurfaceStatus3" 
  "essSurfaceStatus4" 
  "essSurfaceTemperature1" 
  "essSurfaceTemperature2" 
  "essSurfaceTemperature3" 
  "essSurfaceTemperature4" 
 } 
} 
 
  
The Status variable is used to determine if this field element will be activated.   A value of 1 
means this field element will be started, a value of 0 means it will not be started.   
 
The Type variable is used by the program to determine what type of field element to associate 
with this particular field element. For each type of field element there are two files in 
/Controller/field_elements/: type_module.py and FieldElement_type.py. For this 
reason Type always needs to be one of cms, loop, or rwis.  Other types may be added in the 
future such as rtms). 
 
IPAddress  and Port are used for communication with the field element. All communication 
between the Controller device and field elements utilizes IP, so these variables are essential.  
 
RetryNumber and RetryInterval are used when communicating with the field element.  They 
specify the number of times to retry communications prior to reporting an error and the interval, 
in seconds, to wait between retry attempts. 
 
SignAddress is only utilized by CMS field elements. 
 
CommunicationTimeout sets how long the application tries to communicate with the physical 
field element before giving up.  This can be adjusted to accommodate the lag time to establish a 
dialup connection. 



Controller Installation Guide  Controller Software Installation 
 

Western Transportation Institute  Page 9 
 

 
The Interval variable is the amount of time the script pauses between subsequent runs (this 
value is only the pause interval, so actual time from one run to the next will be this value PLUS 
the amount of time it takes to run). This value is in seconds.  Note that for a CMS module this 
will also be the minimum amount of time a message will remain on the CMS before possibly 
being superseded by a higher priority message so be careful about making it too short. 
 
The MaxFileLength, and SavePeriod variables are used for the archive feature. AutoArchive 
turns the feature on (1) or off (0), MaxFileLength sets how large the data file can get (number of 
lines) before it’s archived.  SavePeriod specifies the maximum age of the data (in minutes) that 
is kept in the original file after the archive process runs; this assures that there is sufficient data 
available for alert scripts. In the example, when a data file gets more than 2000 records, the file 
is archived to a backup file, and everything newer than 30 minutes is kept in the current data file.  
Note that since we are using a simple, flat file structure that archiving is recommended to 
increase performance. 
 
The Location, County, Highway and PostMile variables are merely informational. 
 
The DataValidTimeout variable specifies how old the current data can be before it’s considered 
expired or invalid. Once the current data is expired it is no longer used by the alert logic scripts. 
 
The Sensors variable contains a list of the sensor names that should be read, and data stored, for 
the particular field element.  In the case of an RWIS these would be standard NTCIP variable 
names. The RWIS field element automatically converts temperatures to Fahrenheit and wind 
speeds to MPH. The unit names are used for quality control, and must match the section names 
in QualityControl.ini. The Sensor variable, like SignAddress, is not used by all field element 
modules. 
 
The Fieldnames variable contains a list of fieldnames that will be stored in the appropriate data 
file.  The fields will be stored in the file in the order they are listed within the Fieldnames 
variable.  This can help make the data files more readable. 
 
Messages.ini 
This file is used to define messages that can then be used by alert scripts.  Defining the sign 
messages in the Messages.ini file can help make the alert scripts shorter as well as keep the sign 
messages more consistent.  
 
IceWarningMessage: 
{ 
    MessageType: "Page1Normal" 
    FontPage1: "SingleStroke" 
    FontPage2: "SingleStroke" 
    DisplayTime: 50 
    Priority: 10 
    Expiration: 600 
    MessagePage1Line1: "ICY CURVES" 
    MessagePage1Line2: "AHEAD" 
    MessagePage1Line3: "" 
    MessagePage2Line1: "" 



Controller Installation Guide  Controller Software Installation 
 

Western Transportation Institute  Page 10 
 

    MessagePage2Line2: "" 
    MessagePage2Line3: "" 
} 

 
The following values should be listed for each message: 
MessageType: PageBlank,Page1Normal, Page1Flash, Pages2Extended  
FontPage1: SingleStroke, DoubleStroke 
FontPage2: SingleStroke, DoubleStroke 
DisplayTime: integer value in tenths of a second 
Priority: integer value higher numbers are higher priority 
Expiration: integer time until message is expired, in seconds  
MessagePage1Line1: "" 
MessagePage1Line2: "" 
MessagePage1Line3: "" 
MessagePage2Line1: "" 
MessagePage2Line2: "" 
MessagePage2Line3: "" 
 
QualityControl.ini 
This file is used to define min and max values for each unit that field elements return data in. 
These can probably be defined once and never need to change for any other installation. A single 
section is fairly simple: 
 
degF: 
{ 
 min: 0-70.0 
 max: 100.0 
} 
 
The name of the section must match the unit as it appears in the Sensors variable of the field 
element that gets the data. Also note that in the .ini files negative numbers must be subtracted 
from zero, a negative sign before a number causes an error. 
 
passwd 
This file contains the enable password in the command line interface and the passwords for the 
SOCCS ASWC admin screen. It’s located in /controller/manager/. It can have comments; 
any line that begins with a # is ignored, and the first line that doesn’t begin with a # is the enable 
password.  The password is hashed so not easily readable.  A python script has been created to 
maintain this file: controllerpasswd.py.  The following commands are available: 

python controllerpassword.py adduser username password [OPERATOR|SUPERVISOR] 
python controllerpassword.py removeuser username 
python controllerpassword.py changepassword username password 

 
config.ini 
This is the only file that isn’t located in /Controller/manager/, it’s found in 
/etc/controller/ (though a symbolic link could be used to locate it anywhere). This 
configuration file has no separate sections, and only four variables.  



Controller Installation Guide  Controller Software Installation 
 

Western Transportation Institute  Page 11 
 

 
RootPath : 
“/var/hda/Controller” 
LogRotateIntervalDays : 3 
NumSavedLogs: 5 
UseWatchdog: no 
 
The RootPath variable sets the base path for Controller, meaning it doesn’t need to be at 
/Controller.  
 
The LogRotateIntervalDays sets how often the log files are rotated out, in the example it’s 
every 3 days. When a log file is rotated out the old log file has the current date appended to the 
file name and a new empty file takes its place. 
 
If  NumSavedLogs is nonzero, at most NumSavedLogs files will be kept, and if more would be 
created when rollover occurs, the oldest one is deleted.   
 
The UseWatchdog sets whether or not to use an internal watchdog to prevent the controller 
application from hanging.  If set to yes the system will reboot if a signal isn’t received from the 
Contoller application every 30 seconds. 
 



Controller Installation Guide  Install Script Information 
 

Western Transportation Institute  Page 12 
 

Install Script Information 
 
The following outlines the information that will be requested by the ASWC install script: 

 
1. Defaults file found, use values in defaults file? (y/n) 

a. If the values from a previous run of the installation script were stored you will 
have the option of loading and using the default values. 

2. Choose a timezone 
a. You will be prompted to choose between Eastern, Central, Mountain, or Pacific 

timezones. 
3. Please enter the current date 

a. You will be prompted for MM, DD, YYYY 
4. Set time periodically on this device with NTP? (y/n) 

a. If yes you will be prompted for the IP address of the NTP server and how often 
(in seconds) to update the clock 

5. Please insert the Compact Flash card and press enter. Note that contents of the card will 
be lost.  To exit press Ctrl-c 

6. How often should the log files be rotated (in days)? 
a. A new log will be started each interval, the previous log will be saved with the 

date appended to the name.  As currently configured the last 5 log files will be 
saved with older ones deleted. 

7. Will the network be configured automatically with dhcp (y/n)? 
a. If you answer “n” the system will prompt for the IP Address, Subnet Mask, 

Network, and Gateway addresses. 
8. Store answers in default file? (y/n) 

a. If “y” the values previously entered will be saved for future use. 

 



Controller Installation Guide  SOCSS Client Installation 
 

Western Transportation Institute  Page 13 
 

SOCCS Client Installation 
 
The following outlines the installation instructions for the SOCCS ASWC client software: 
Any machine running apache and mod_php will do. The Moxa DA-661s come set up like this by 
default. The same device that is running controller may also serve up the SOCCS client software 
although for best performance the SOCCS client software should be installed on a machine that 
is local. 

1. Copy the contents of the SOCCSClient directory from the installation media to 
/home/httpd/html/ (on the DA-661, on any other machine copy it to whatever directory is 
designated as the DocumentRoot in the apache httpd.conf file). 

2. Verify that apache is running. 
a. You can use the “ps” command and look for apache/httpd.conf process. 

3. Check the changereasons.txt file located with the SOCCS client files and edit as 
necessary. 

a. This is a simple text file that contains the reasons, one per line, which will 
populate the dropdown box for the CMS message chooser window of the SOCCS 
client. 

4. Set up the list of Controllers that will be monitored by the SOCCS client: 
a. On a client machine, browse to http://serveraddr/config.php 
b. Click “Add” 
c. Enter:  

i. Location:  Location is just a descriptive name of the Controller 
installation, and may be anything.  

ii. IP Address: the ip address of the Controller.  
iii. Update Interval:  Update interval is how often the list should retrieve 

status information from the Controller device in minutes. 
iv. SOCCS Timeout:  How the SOCCS interface will wait for a connection 

with the Controller before timing out.  
v. Admin Update Interval:  Admin update interval is how often the admin 

window, if open, should retrieve status information from the Controller 
device in minutes.  Note that since the Admin window tries to keep an 
authenticated connection with the Controller open that in the case of a 
dialup connection this interval should be less than the dialup inactivity 
hang-up interval. 

d. Click “Save” 
5. Create the documentation directory. 

a. The SOCCS ASWC documentation must be stored on a compact flash card 
installed in the Moxa as there is not enough room for the files on the built-in 
memory. 

b. Move the SOCCSDocumentation from the installation media to a directory on the 
compact flash card.  Be sure the images subdirectory gets copied (the –r option on 
the “cp” command will copy the subdirectory also) 

c. Create a symbolic link for the documentation directory. 
i. From the /home/httpd/html directory (or the directory designated by the 

DocumentRoot if different) use the following command to create a link: 
“ln –s /var/hda/documentation/ documentation” 

http://serveraddr/config.php


Controller Installation Guide  SOCSS Client Installation 
 

Western Transportation Institute  Page 14 
 

ii. Note that if necessary replace “/var/hda/documentation” with the actual 
location of the documentation files. 

 
6. Browse to http://serveraddr/SOCCSAutomatedController.html to access the SOCCS 

client. 

 

http://serveraddr/SOCCSAutomatedController.html


Controller Installation Guide  Writing Alert Scripts 
 

Western Transportation Institute  Page 15 
 

Writing Alert Scripts 
 
The /Controller/alert_logic directory contains a template directory with a basic alert script 
template. The alert scripts are written in the Python programming language, and all facilities 
available in Python are available to the alert scripts; however, much of what is needed to 
integrate into the Controller application is provided, so the scripts can be very simple. Field 
elements can be accessed directly by name, as they appear in FieldElement.ini. Alert scripts will 
generally include a condition with actions to be taken if the condition is true, usually putting a 
message into the sign queue. 
 
#Script Template 
""" 
Variables          possible values (values between asterisks represent the 
default values) 
These are the components of a message in the Messages.ini file, any component 
can be overridden using the syntax: msg.component = xxx 
messageType        *PageBlank*,Page1Normal, Page1Flash, Pages2Extended 
fontPage1          *SingleStroke*, DoubleStroke 
fontPage2          *SingleStroke*, DoubleStroke 
 
displayTime        *50* integer value in 1/10 seconds 
priority           *10* integer value, higher number is higher priority 
expiration         *10 Minutes* time until message is expired, in seconds 
messagePage1Line1  *empty string* string value 
messagePage1Line2  *empty string* string value 
messagePage1Line3  *empty string* string value 
messagePage2Line1  *empty string* string value 
messagePage2Line2  *empty string* string value 
messagePage2Line3  *empty string* string value 
 
""" 
# grab a message from the Messages.ini file 
msg = Messages[predefinedmessagename] 
 
if FieldElement.sensorname(optional time span) [>, >=, <, <=, ==, !=] 
threshold: 
    # Example of overriding  part of the message 
    msg.messagePage1Line1 = "Custom first line" 
 msg.priority = 5 
    CMSSignName.WriteLog("Put this message in the log") 
    CMSSignName.AddMessageToQueue(msg) 
 
FieldElementName can be any field element that was listed in FieldElement.ini, and 
sensorname can be anything listed in the sensornames variable of that field element. The 
parentheses after the sensor name are required by Python, though in most cases they will be 
empty, as in the example. Optionally a time span may be put inside the parentheses, measured in 
minutes, which will return a list of all the sensor readings found in that time span. Members of 
the list are accessed with square brackets, starting at 0, so for example: 
FieldElementName.sensorname(60)[0] will return the earliest sensor reading within the last 
hour. Python provides a few built in operations that can be done on a list, namely min, max, and 



Controller Installation Guide  Writing Alert Scripts 
 

Western Transportation Institute  Page 16 
 

avg. For example, the average of all the readings over the last hour is given by 
avg(FieldElementName.sensorname(60)). 
 
Comparison can be any of the python comparison operators <, <=, >, >=, ==, !=, which are, 
respectively, less than, less than or equal to, greater than, greater than or equal to, equal to, and 
not equal to. Threshold is the name of any of the thresholds listed in the alert script’s section of 
AlertLogic.ini or alternatively a hard coded value.  Note that if you hard code a threshold value it 
can only be changed by changing the script.  Multiple conditions can be combined with “and” or 
“or” between them, a condition consisting of two or more conditions separated with an “and” 
will be true only if all the conditions are true. A condition consisting of two or more conditions 
separated by an “or” will be true if any one of the conditions are true. 
 
CMSSignName can be any sign listed in FieldElement.ini, namely, a FieldElement in which the 
variable Type is equal to cms. Several parameters are automatically provided for setting the 
message on a sign. messageType can be any of: PageBlank, which is the default; Page1Normal; 
Page1Flash; or Pages2Extended. fontPage1 and fontPage2 can be set individually, and be either 
SingleStroke or DoubleStroke. Up to 6 message lines are available: two pages of three lines 
each, though for the second page to display messageType must be set to Pages2Extended. If the 
Message type is Pages2Extended, displayTime is the time in tenths of a second between page 
switches. It defaults to the maximum value of 30, or 3 seconds. 
 
 The priority and expiration values are both used to control the behavior of the CMS field 
element as it determines what message to put on the sign next. Priority is an integer from 0 to 
32767, higher numbers get precedence. If a message in the queue has a higher priority than the 
message currently on the sign, the sign will be set with the higher priority message, even if the 
other message hasn’t yet expired. While the message currently on the sign may be preempted by 
another message, it isn’t deleted until it expires, so if the high priority message expires before the 
lower priority message, the lower priority message will be placed back on the sign. expiration is 
a number in seconds, representing how long the message should stay in the queue. Long 
expiration periods mixed with short run intervals are not recommended as the message queue 
may grow too large. 
 
WriteLog("Put this message in the log")  adds a message to the log for the sign. Note that 
Python formatting and variable substitution may be used for example: WriteLog("Icy Curve 
Warning. Values: %d, %d" %(RWIS.essSurfaceStatus1(),RWIS.essSurfaceStatus2())) will 
replace the two %d (for decimal values) with the two RWIS values in the parenthesis.  
 
AddMessageToQueue(msg) adds the message to the message queue for the designated sign.  In 
this example we assigned an entry from the Messages.ini file to the variable “msg” so we could 
modify compnents of the message.  An alternative is no modifications are necessary is 
AddMessageToQueue(Messages[predefinedmessagename]) 
 
 



Controller Installation Guide  Python Syntax 
 

Western Transportation Institute  Page 17 
 

Python Syntax 
Indentation matters. A conditional statement always has one or more statements following it that 
should only be done if the condition is true. The statements associated with a condition are 
indented one tab further than the conditional statement. The first line that is not indented will be 
executed regardless of whether or not the condition is true. 
 
Conditional statements are ended by a colon. 
 
Every statement must be on a line by itself, and only use one line. If a statement is too long to fit 
on one line, or is more aesthetically appealing or more readable when divided between lines, a \ 
can be used at the end of a line to indicate the statement is continued on the next. 
 



Controller Installation Guide  Regular Maintenance 
 

Western Transportation Institute  Page 18 
 

Regular Maintenance 

Weekly 
Check for errors that have occurred and address them if necessary. Use the grep utility  to search 
the week’s log files for the word ERROR: grep ERROR /controller/log/system.log. Repeat 
for each log file that has been generated over the week. 
 
Check the amount of free space on the CompactFlash card with the command df -h (the card 
will be the one labeled /dev/hda1). If the space available is less than 200M then some log files 
and data files should be moved off the device, which can be done easily with SFTP. Both log and 
data files have the date appended to the end of the file name after they have been archived, 
signifying they are just historical and are no longer used by the system. If the free space on the 
card is getting low then every file ending with a date should be copied to an external system and 
erased on the Controller device. 

Monthly 
Copy all archived log and data files from the Controller device to an external device and delete 
them off the Controller CompactFlash card. 



Controller Installation Guide   Reference 
 

Western Transportation Institute  Page 19 
 

Reference 
 
The following pages are for reference to sensor names when writing alert logic scripts, or, if the 
need arises, to change the Controller application itself. The two python files quoted are stored in 
the field_elements directory and are used for Controller’s interface with the outside world. If the 
unit conversion for a sensor needs to be added or changed the ConversionDict.py file may be 
modified. If an RWIS sensor needs to be accessed but is not in OIDDict.py it may be added. In 
light of these possible modifications the following are for reference only, the final authoritative 
source of the behavior of a device is the code on the device itself. 



Controller Installation Guide   Reference 
 

Western Transportation Institute  Page 20 
 

ConversionDict.py 
 
This file is used by the program to make automatic unit conversions after reading from an RWIS 
sensor. After a sensor is read, if this dictionary contains the sensor, then the formula will be 
applied to the value read. Quality Control checks occur after the conversion, so they should be 
done in the unit that is being converted to. 
 
ConvDict = {  

 'essAirTemperature1': '32+1.8*float(value)/10.0',  #Temp. F = (1.8)*Temp C+32 
            'essAirTemperature2': '32+1.8*float(value)/10.0',    
            'essAirTemperature3': '32+1.8*float(value)/10.0', 

#convert wind speed from tenths of meters per second; 1m/s=2.2369362920544mph 
'essAvgWindSpeed': 'float(value)/10*2.24',                      
'essMaxWindGustSpeed':'float(value)/10*2.24', 

            'essRelativeHumidity':'float(value)/100.00',  # convert % to decimal 
            'essDewpointTemp':'32+1.8*float(value)/10.0', 
            'essSurfaceTemperature1':'32+1.8*float(value)/10.0', 
            'essSurfaceTemperature2':'32+1.8float(value)/10.0', 
            'essSurfaceTemperature3':'32+1.8*float(value)/10.0', 
            'essSurfaceTemperature4':'32+1.8*float(value)/10.0', 
            'essSurfaceTemperature5':'32+1.8*float(value)/10.0', 
            'essSurfaceTemperature6':'32+1.8*float(value)/10.0', 
            } 
 



Controller Installation Guide   Reference 
 

Western Transportation Institute  Page 21 
 

OIDDict.py 
This file maps sensor names to OIDs for the RWIS variables. If an OID is wrong or a sensor is 
excluded this dictionary should be changed and Controller restarted. The OIDs are all the digits 
that occur after the common initial 1.3.6.1.4.1.1206. 
 
OIDDict = { 
            'essAirTemperature1': '4.2.5.2.5.2.1.3.1,-1000..1001', 
            'essAirTemperature2': '4.2.5.2.5.2.1.3.2,-1000..1001', 
            'essAirTemperature3': '4.2.5.2.5.2.1.3.3,-1000..1001', 
            'essWindSituation0':  '4.2.5.2.4.3.0', 
            'essAvgWindDirection': '4.2.5.1.11.1.0,0..361', 
            'essAvgWindSpeed': '4.2.5.1.11.2.0,0..65535', 
            'essMaxWindGustSpeed':'4.2.5.1.11.41.0,0..65535', 
            'essMaxWindGustDir':'4.2.5.1.11.43.0,0..361', 
            'essRelativeHumidity':'4.2.5.1.13.3.0,0..101', 
            'essDewpointTemp':'4.2.5.2.5.4.0,-1000..1001', 
            'essSurfaceStatus1':'4.2.5.2.9.2.1.7.1', 
            'essSurfaceStatus2':'4.2.5.2.9.2.1.7.2', 
            'essSurfaceStatus3':'4.2.5.2.9.2.1.7.3', 
            'essSurfaceStatus4':'4.2.5.2.9.2.1.7.4', 
            'essSurfaceStatus5':'4.2.5.2.9.2.1.7.5', 
            'essSurfaceStatus6':'4.2.5.2.9.2.1.7.6', 
            'essNtcipCategory':'4.2.5.2.1.2.0', 
            'essSurfaceWaterDepth':'4.2.5.2.9.2.1.10.1', 
            'essSurfaceConductivity':'4.2.5.2.9.2.1.12.1', 
            'essPressureHeight':'4.2.5.2.3.2.0', 
            'essPrecipitationEndTime':'4.2.5.2.6.9.0', 
            'essSpotWindDirection':'4.2.5.2.4.1.0', 
            'essMinTemp':'4.2.5.2.5.6.0', 
            'essPavementTemperature':'4.2.5.2.9.2.1.9.1', 
            'essPavementSensorError':'4.2.5.2.9.2.1.15.1', 
            'Globaltime':'4.2.6.3.1.0', 
            'essPrecipitationOneHour':'4.2.5.1.13.19.0', 
            'essVisibility':'4.2.5.2.8.1.0', 
            'numEssPavementSensors':'4.2.5.2.9.1.0', 
            'essSurfaceFreezePoint':'4.2.5.2.9.2.1.13.1', 
            'essPrecipitationTwelveHours':'4.2.5.1.13.22.0', 
            'essMaxWindGustDir':'4.2.5.1.11.43.0', 
            'essSubSurfaceTemperature':'4.2.5.2.9.4.1.5.1', 
            'essPrecipYesNo':'4.2.5.2.6.5.0', 
            'essPrecipitationSixHours':'4.2.5.1.13.21.0', 
            'essAtmosphericPressure':'4.2.5.1.7.4.0', 
            'essNumTemperatureSensors':'4.2.5.2.5.1.0', 
            'essPrecipitation24Hours':'4.2.5.1.13.23.0', 
            'essSurfaceSalinity':'4.2.5.2.9.2.1.11.1', 
            'essPrecipitationThreeHours':'4.2.5.1.13.20.0', 



Controller Installation Guide   Reference 
 

Western Transportation Institute  Page 22 
 

            'essSurfaceTemperature1':'4.2.5.2.9.2.1.8.1', 
            'essSurfaceTemperature2':'4.2.5.2.9.2.1.8.2', 
            'essSurfaceTemperature3':'4.2.5.2.9.2.1.8.3', 
            'essSurfaceTemperature4':'4.2.5.2.9.2.1.8.4', 
            'essSurfaceTemperature5':'4.2.5.2.9.2.1.8.5', 
            'essSurfaceTemperature6':'4.2.5.2.9.2.1.8.6', 
            'globalDaylightSaving':'4.2.6.3.2.0', 
            'essSpotWindSpeed':'4.2.5.2.4.2.0', 
            'essNtcipTypeofStation':'4.2.5.1.2.1.0', 
            'essPrecipitationStartTime':'4.2.5.2.6.8.0', 
            'essPrecipRate':'4.2.5.1.13.14.0', 
            'essPrecipSituation':'4.2.5.2.6.6.0', 
            'essMaxTemp':'4.2.5.2.5.5.0', 
            'essSurfaceBlackIceSignal':'4.2.5.2.9.2.1.14.1', 
            'essWetBulbTemp':'4.2.5.2.5.3.0', 
            'essReferenceHeight':'4.2.5.2.3.1.0', 
            'essWindSensorHeight':'4.2.5.2.3.3.0', 
            'essWaterDepth':'4.2.5.2.6.1.0' 
            } 
 



Controller Installation Guide   Reference 
 

Western Transportation Institute  Page 23 
 

Loop Module Sensors 
 
The following is a list of available loop module variables: 
 

'Headway1'         
'Headway2' 

         'Headway3' 
         'Headway4' 
         'Headway5' 
         'Headway6' 
         'Headway1_avg' 
          'Headway2_avg' 
          'Headway3_avg' 
          'Headway4_avg' 
          'Headway5_avg' 
          'Headway6_avg' 
          'Speed1'   #current speeds range from  
          'Speed2'  #5 to 82 miles per hour 
            'Speed3'  #if > 82mph then zero 
            'Speed4'  #unit is mph 
            'Speed5' 
            'Speed6' 
          'Speed1_avg' 
          'Speed2_avg' 
          'Speed3_avg' 
          'Speed4_avg' 
          'Speed5_avg' 
          'Speed6_avg' 
          'Occupancy_A' 
          'Volume_A' 
          'Occupancy_B' 
          'Volume_B' 

          'Occupancy_C' 
          'Volume_C' 
          'Occupancy_D' 
          'Volume_D' 
          'Occupancy_E' 
          'Volume_E' 
          'Occupancy_F' 
          'Volume_F' 
          'Occupancy_G' 
          'Volume_G' 
          'Occupancy_H' 
          'Volume_H' 
          'Occupancy_I' 
          'Volume_I' 
          'Occupancy_J' 
          'Volume_J' 
          'Occupancy_K' 
          'Volume_K' 
          'Occupancy_L' 
          'Volume_L'           

'Occupancy_M' 
          'Volume_M' 
          'Occupancy_N' 
          'Volume_N' 
          'Occupancy_O' 
          'Volume_O' 
          'Occupancy_P' 
          'Volume_P' 
 

 
 

 


	Revision History
	Introduction
	Security and Logins
	Controller Software Installation
	Controller Passwords
	Editing Configuration Files

	Install Script Information
	SOCCS Client Installation
	Writing Alert Scripts
	Python Syntax
	Regular Maintenance
	Weekly
	Monthly


	Reference
	ConversionDict.py
	OIDDict.py
	Loop Module Sensors


